DIC.PPS a Contribution to the Decarbonization of the Powertrain

September, 8th, 2022

Guido Pengemann Sales Representative

DIC and Sun Chemical

Company Name	DIC Corporation	
Corporate Headquarters	DIC Building, 7-20, Nihonbashi 3-chome, Chuo-ku, Tokyo, Japan	
Date of Foundation	February 15, 1908	
Paid-in Capital	¥96.6 billion	
Description of Business	Manufacture and sale of printing inks, organic pigments and synthetic resins	
Number of Employees	Consolidated: 20,474 Nonconsolidated: 3,681 (As of December 31, 2021)	
Number of Group Companies	189 (Domestic: 29, Overseas: 160) (As of December 31, 2021)	
Consolidated Net Sales	\¥855.4 billion (Fiscal year 2021) (approx. \$7.9 billion USD)	
Consolidated Operating Income	\¥42.9 billion (Fiscal year 2021)	

Corporate Headquarters

https://www.dic-global.com/en/about/branding.html#dby

The DIC Group's Brand Slogan

Color & Comfort The DIC Group strives to help create a society that adds rich color and comfort to people's lives.

Sun Chemical is the manufacturing, R&D, marketing, and sales arm of the global DIC Group in the Americas, Europe, Africa and Middle East

www.dic-global.com

DIC.PPS Production Locations

Polymer

Kashima Plant 1 Ibaraki, Japan

Compounds

Kashima Plant 3 Ibaraki, Japan

Kashima Plant 4 Ibaraki, Japan

Sodegaura Plant Chiba, Japan

Komaki Plant Aichi, Japan

DIC Compounds (Malaysia) Sdn. Bhd. Penang, Malaysia

DIC Europe GmbH Vienna Plant

Zhangjiagang, China

DIC.PPS Product Portfolio

Outline

- Injection Molding Grades for Coolant Applications
- Extrusion Grade for Pipe & Tube Applications
- Thermally Conductive Grade
- Injection Molding Grades for LiB Battery Gasket/Insulator
- Laser welding of DIC.PPS

DIC.PPS Injection Molding Grades for Coolant Applications

DIC.PPS Grade	Filler systems	Key Characteristics
FZ-2140-T3	Linear PPS, 40% GF	Improved hydrolysis resistance and high knitline strength
FZ-1140-R5	Branched PPS, 40% GF	Improved hydrolysis resistance
FZ-6600-R5	Linear PPS, 65% GF/MF	Improved hydrolysis resistance and high knitline strength

Typical applications are water pump impeller, thermostat, TMM etc. Thermal Management Modules lead to a CO2 reduction of up to 3% **Coolant Aging Test Results**

Tensile Strength, measured at RT after Aging in Toyota Super LLC at 140°C

FZ-2140-T3 and FZ-6600-R5 show excellent property retention after 3,000 hrs (90+%)

DIC.PPS Extrusion Grade for Pipe & Tube Applications

• DIC.PPS Z-200-XP

 An unfilled, impact modified, extrusion grade designed for use in pipe and tube applications, especially for automotive coolant lines

Key features

- High viscosity optimum for extrusion process
- Flexibility / elasticity suitable for heat forming process
- Keeping PPS inherent chemical & heat resistance

Pipes and tubes made with PPS provide excellent resistance to automotive coolant

Z-200-XP Coolant Aging Test

Aging in Glysantin[®] G65 / deionized water = 50 / 50 vol% at 135°C (ISO 527, ISO type-A dumbbell)

Coolant pipes are designed for high temperature up to 135°C

Pipe Bending Test

As extruded

After heat aging for 48 h at 180 °C

After heat aging for 1,000 h at 150 °C

No visible cracks created by bending, even on the tubes after heat treatment

Air Leak Test

• Air pressure 0.5 MPa (5 bar) applied to the pipes after the bending test

d: 10 mm pipe after heat aging for 48 h at 180 °C

d: 10 mm pipe after heat aging for 1,000 h at 150 °C

No air leak from the bended pipes

DIC.PPS Thermally Conductive Grades

DIC offers a wide range of thermally conductive materials

These materials are commercially used in the field of electric drives, especially for actuator – coil and stator sealing

- Material: DIC.PPS TX-2020-M1
- Key Properties: Thermal conductivity Reasonable flow in thin walls Dimensional stability

Stator coil

Thermal Analysis Case Study for Insulator Application

Highly thermally conductive insulator reduces coil temperature by 30°C or more

DIC.PPS for Lithium-ion Battery Cells

• DIC.PPS FZ-2100 and Z-200-E5/E2

Ø Unfilled injection molding compounds for Lithium-ion Battery (LiB) gaskets

• DIC.PPS FZ-1140-D5

Ø Glass fiber reinforced injection molding compound for LiB cell insulators

• Key Requirements:

- Ø Chemical resistance to electrolyte
- Ø Resistance to compressive stress
- Ø Electrical insulation high dielectric strength
- Ø Keeping PPS inherent flame retardancy

DIC.PPS provides excellent chemical resistance to LiB cell electrolytes Superior insulation properties and resistance to compressive stress

Insulator/Gasket

DIC.PPS for LiB Battery Gasket/Insulator

Laser Welding of DIC.PPS

§ Objective

To demonstrate the feasibility of laser welding DIC.PPS on containers with the support of Evosys Laser GmbH.

The containers consist of a housing and a cover.

§ Welding technology

- Ø Process: contour welding and quasi-simultaneous welding
- Ø Equipment: Evosys Next Generation Optics (NGO)

Laser welding tests were completed on standard PPS grades

Laser Welded Samples

Samples

- Laser absorbing part: cup-shaped specimen (original DIC design): DIC.PPS FZ-2140 BLACK >PPS-GF40<</p>
- Laser transparent part: flat plate specimen of thickness 0.7 mm and 1.0 mm:
 DIC.PPS FZ-2115 >PPS-GF15<
 DIC.PPS FZ-2140 >PPS-GF40

Samples welded by Evosys Laser GmbH

Burst Pressure Test - Experiment

1. Fill with water

2. Connect to the pump

3. Increase the water pressure until it bursts

Burst Pressure Test - Results

Thank you very much for your attention!

Any Questions?

APPENDIX

Aging in different coolants

Tests with different coolants show very similar aging properties after 3000 hours at 140°C

Definitions: Contour Welding and Quasi-Simultaneous Welding

