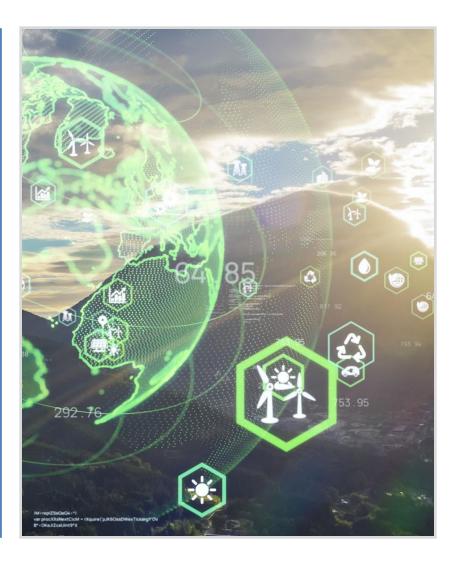


SUSTAINABILITY AND INNOVATION BY KRAIBURG TPE


JOSEF NEUER

Fundamental Understanding of Sustainability

For KRAIBURG TPE, sustainability is the much-needed balancing act between economic success, environmental protection and social responsibility.

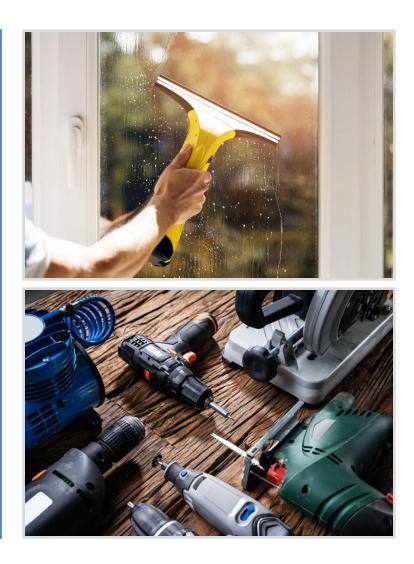
KRAIBURG TPE considers sustainability as a vital element for the company's longterm existence and success.

Our Commitment to Sustainability

Sustainability Core topics for KRAIBURG TPE and its Stakeholders

- Circular Economy
- Climate and Energy
- Employees
- Governance and Compliance

Continuous Improvement

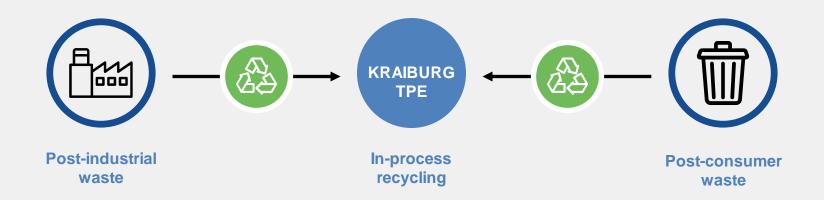

Lifelong learning with a commitment to becoming better and more responsible each day.

Sustainability at KRAIBURG TPE

- Our products are
 - Iong-lasting
 - able to integrate functionality
 - ready for in process recycling
- Our products are available with
 - bio-based content
 - recycling content

Thermoplastic Elastomers Innovation

THERMOLAST[®] R Universal PCR-TPE



Reduce & Reuse – We close the loop

USE OF VARIOUS FEEDSTOCKS IN OUR PRODUCTS

PCR-TPEs vs. Virgin TPEs

Comparing typical TPE from recycling and virgin resources

	TF7CGT	RC7OGG-NTRL	TC7GPN
PCR Content	0 %	27 %	0 %
Color	transparent	natural	natural
Hardness [ShA]	68	72	68
Density [g/cm ³]	0.89	0.89	1.10
Tensile Strength [MPa]	7.5	7.0	10.0
Elongation at break [%]	720	650	790
Tear resistance [N/mm]	20	21	23
Spiral flow length [cm]	110	99	67
CS, 72 h @ 23 °C [%]	34	43	30

THERMOLAST[®] R - RC/PCR

Post Consumer Recycling TPE – RC/PCR in natural base

	RC4OGG -NTRL	RC5OGG -NTRL	RC6OGG -NTRL	RC7OGG -NTRL	RC8OGG -NTRL	RC9OGG -NTRL
PCR Content	13 %	17 %	22 %	27 %	33 %	41 %
Hardness [ShA]	40	49	62	72	79	91
Density [g/cm ³]	0.88	0.89	0.89	0.89	0.89	0.89
Tensile Strength [MPa]	7.9	7.8	7.3	7.0	7.4	9.0
Elongation at break [%]	850	800	700	650	600	550
Tear resistance [N/mm]	12	13	17	21	24	37
Spiral flow length [cm]	108	103	98	99	94	110
CS, 72 h @ 23 °C [%]	26	28	35	43	45	56

11

THERMOLAST[®] R Universal PCR-TPE

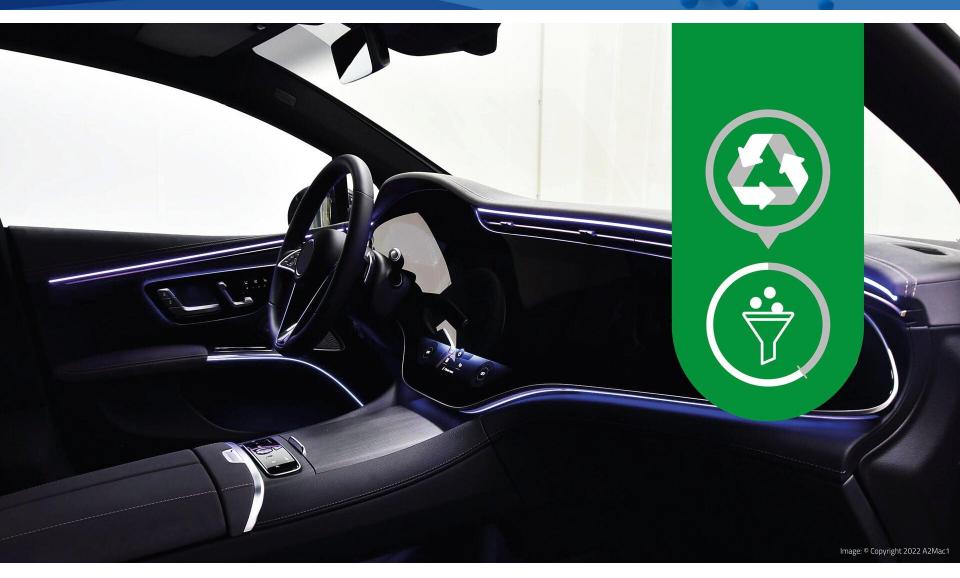
RC/PCR Series

- Hardness range: 40-90 Sh A
- Hardness dependent PCR-Content from 13-40 %
- Natural materials

Key Features

- Adhesion to PP
- Good mechanical properties and flowability
- REACH, SVHC and RoHS
- Reliable quality and availability

Application Examples:


Function, grip and design elements, caps and closures, sealing systems, cable management

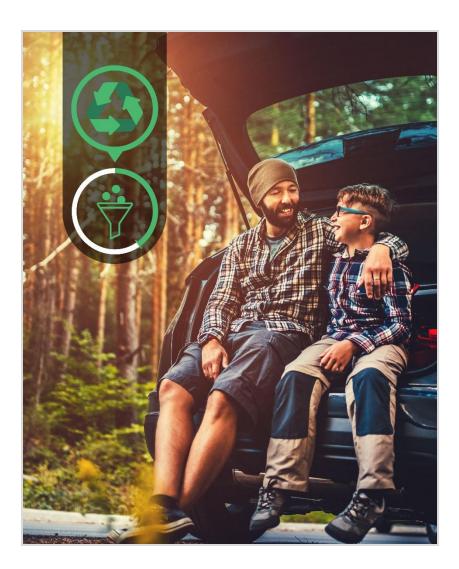
THERMOLAST[®] R RC/FG for Interior Applications

KRAIBURG CUSTOM-ENGINEERED TPE AND MORE

Market Demands Interior

Recycled content > 20 %

%



Adhesion to PP

Hardness range from 60 to 80 ShA

Low density (part weight reduction)

Interior requirements (Emission/Odor/Fogging)


KRAIBURG CUSTOM-ENGINEERED TPE AND MORE

Interior Materials - Requirements

0

Fulfilment of OEM interior specifications

- Thermodesorption [VOC/FOG]
 - VDA 277 / VDA 278
- Odor
 - VDA 270 B-3
- Light Fastness (UV Interior)
 - DIN EN ISO 105-B06 (Method 3)
- Flammability (FMVSS)
 - ISO 3795 / DIN 75200 / 49 CFR § 571.302

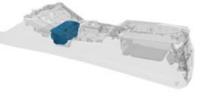
KRAIBURG CUSTOM-ENGINEERED TPE AND MORE

New Interior Recycling Series

- Series will be named:
- Compounds will be named:

RC/FG RI#OIG-BLCK*

THERMOLAST® R Based on Post Industry Recycling Material 60 – 80 ShA Olefin based Suitable for automotive Interior General Purpose Colored in BLACK


*Compounds will be produced for EMEA region only

Portfolio Recycling Interior Series RC/FG

			RI60IG-BLCK	RI70IG-BLCK	RI80IG-BLCK
Recycling content [%]*		> 21	> 25	> 30	
Hardness	DIN ISO 7619-1	Sh A	61	70	81
Density	DIN EN ISO 1183-1	g/cm ³	0.93	0.94	0.94
Tensile Strength	DIN 53504/ISO 37	N/mm ²	7,.0	9.0	11.0
Elongation at break	DIN 53504/ISO 37	%	800	750	750
Flow Spiral	200° / 760 bar	cm	83	78	70
Abrasion	ISO 4649:2014 - Method A	mm³	264	167	132
Fogging	DIN 75201-B	mg	0.74	0.66	0.69
Odor	VDA 270 B-3	Rating	3.5	3.5	3.5
Emission	VDA 278 VOC, Fog	µg∕g	225 / 1150	283 / 1280	339 / 1220

*RC/FG only with PIR raw materials

Portfolio Interior, 70 ShA, PP-Adhesion

			NEW					
			TC7GPZ	TC7COZ	RI70IG-BLCK	TC7FEZ		
	Highlight		General purpose	General purpose Low density	Recycling Interior	Surface finish Best Abrasion		
Recycling	Content	%	-	-	25	-		
Hardness	DIN ISO 7619-1	Sh A	68	72	70	72		
Density	DIN EN ISO 1183-1	g/cm3	1,1	0,98	0,94	0,93		
Tensile Strength	DIN 53504/ISO 37	N/mm2	9,0	11,0	9,0	6,0		
EB	DIN 53504/ISO 37	%	700	750	750	600		
Possible Adhesion		РР	РР	РР	РР			

Possible Applications

Anti Slip Mats

- Replacement for TC6GPZ or TC6COZ-Grades
- New Solution RI6OIG-BLCK with 20% Recycling Content
- Suitable for Automotive Interior
- Higher recycling content possible with higher hardness.
 Up to 30 % at 80 ShA.

	TC6GPZ	⇔	RI6OIG- BLCK
RECYCLING CONTENT in %	0	Û	20.0
Hardness in ShA	59	⇒	61
Density in g/cm³	1.1	Û	0.93
Tensile Strength in MPa	8.0	₽	7.0
Elongation at Break in %	750	$\mathbf{\nabla}$	859
Flow spiral in cm	67	$\mathbf{\nabla}$	83

Possible Applications

Cupholder

- Replacement for TC7GPZ or TC7COZ
- New solution RI7OIG-BLCK with 25% Recycling Content
- Suitable for Automotive Interior
- Higher recycling content possible with higher hardness.
 Up to 30 % at 80 ShA

	TC7GPZ	⇔	RI7OIG- BLCK
RECYCLING CONTENT in %	0	Û	>25.0
Hardness in ShA	68	⇒	70
Density in g/cm³	1.1	Û	0.94
Tensile Strength in MPa	9.0	₽	9.0
Elongation at Break in %	700	$\mathbf{\nabla}$	750
Abrasion in mm ³	320	Û	167

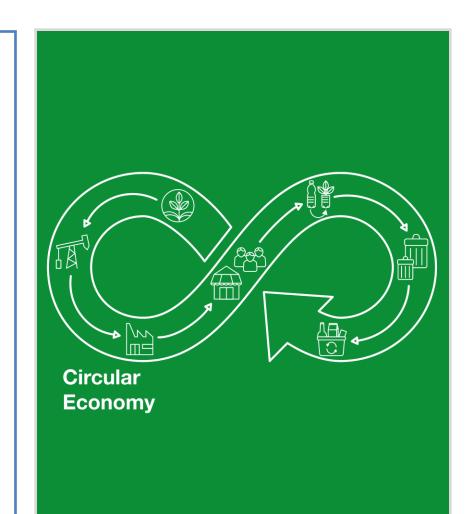
Possible Applications

Floor mats

- Replacement for TC8COZ or special floor mat grades
- New Solution RI8OIG-BLCK with 30% Recycling Content
- Suitable for Automotive Interior
- Good abrasion values for demanding surfaces

	TC8COZ	⇔	RI8OIG- BLCK
RECYCLING CONTENT in %	0	Û	>30.0
Hardness in ShA	80	⇒	81
Density in g/cm ³	0.985	Û	0.94
Tensile Strength in MPa	14.9	\$⊒	11.0
Elongation at Break in %	743	⇔	750
Abrasion in mm ³	120	⇒	132

Circular Economy and our Contribution


Circularity of Materials

Rising ecological concerns on plastic use, especially with end-users and politics led to new regulations and laws.

Circularity of materials has become one of the most important topics

- Design for Recycling
- Recyclability of materials
- Use of recyclates instead or next to virgin plastics

TPS have so far been perceived as nonrecyclable and interfering with recycling of other plastics.

KRAIBURG (USTOM-ENGINEERED **TPE** AND MORE

Proof of Recyclability

How was it possible?

With CYCLOS HTP we jointly tested representative compounds for a) Co-Recycling with HDPE b) Co-Recycling with PP

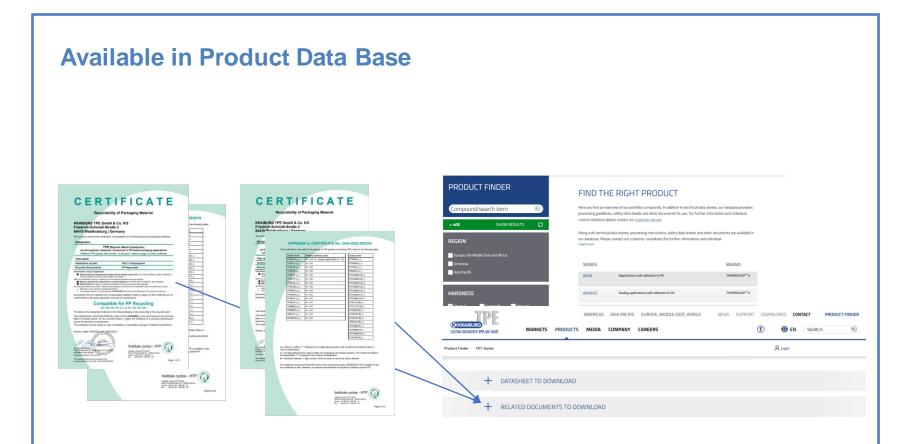
The results are:

No significant changes in processing, MFR and mechanical properties for all test compounds in PP and HDPE recycling stream observable

- → Compatible for PP-Recycling
- → Compatible for HDPE-Recycling

Cyclos HTP

Test Institute for Recyclability Confirmation


Cyclos HTP is a well-known institute for the certification of packaging solutions. The evaluation is based on the specifications of the "Zentrale Stelle Verpackungsregister".

These include sorting tests, as well as mixing tests on the influence of the packaging on the quality of the recycle stream.

Our Certificates

The information provided in this document correspond to our knowledge on the subject at the date of ist publication and may be subject to revision as new knowledge and data become available. All values reported are typical values based on sample test resultsand are not a guarantee of performance. The responibility to conduct testing to determine suitability of use for the particular process or end-use application remains with the customer. KRAIBURG TPE does not warrant or assume any liability with regards to the use of the information presented in this document.

This document is valid until: December 2023

For more information about KRAIBURG TPE please visit: www.kraiburg-tpe.com